Cellulosic ethanol

Cellulosic ethanol is ethanol (ethyl alcohol) produced from cellulose (the stringy fiber of a plant) rather than from the plant's seeds or fruit. It can be produced from grasses, wood, algae, or other plants. It is generally discussed for use as a biofuel. The carbon dioxide that plants absorb as they grow offsets some of the carbon dioxide emitted when ethanol made from them is burned, so cellulosic ethanol fuel has the potential to have a lower carbon footprint than fossil fuels.

Interest in cellulosic ethanol is driven by its potential to replace ethanol made from corn or sugarcane. Since these plants are also used for food products, diverting them for ethanol production can cause food prices to rise; cellulose-based sources, on the other hand, generally do not compete with food, since the fibrous parts of plants are mostly inedible to humans. Another potential advantage is the high diversity and abundance of cellulose sources; grasses, trees and algae are found in almost every environment on Earth. Even municipal solid waste components like paper could conceivably be made into ethanol. The main current disadvantage of cellulosic ethanol is its high cost of production, which is more complex and requires more steps than corn-based or sugarcane-based ethanol.

Cellulosic ethanol received significant attention in the 2000s and early 2010s. The United States government in particular funded research into its commercialization and set targets for the proportion of cellulosic ethanol added to vehicle fuel. A large number of new companies specializing in cellulosic ethanol, in addition to many existing companies, invested in pilot-scale production plants. However, the much cheaper manufacturing of grain-based ethanol, along with the low price of oil in the 2010s, meant that cellulosic ethanol was not competitive with these established fuels. As a result, most of the new refineries were closed by the mid-2010s and many of the newly founded companies became insolvent. A few still exist, but are mainly used for demonstration or research purposes; as of 2021, none produces cellulosic ethanol at scale.


© MMXXIII Rich X Search. We shall prevail. All rights reserved. Rich X Search